Roll No.

B028314(028)

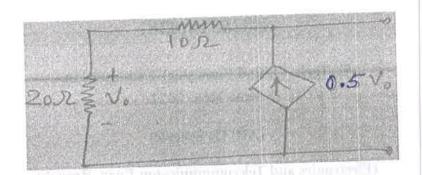
B. Tech. (Third Semester) Examination, Nov.-Dec. 2021

(AICTE Scheme)

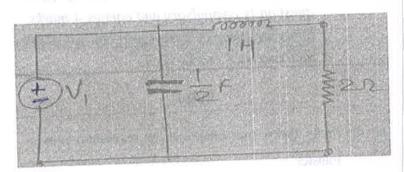
(Electronics and Telecommunicaton Engg. Branch)

NETWORK THEORY

Time Allowed: Three hours


Maximum Marks: 100

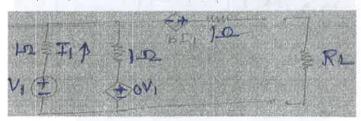
Minimum Pass Marks: 40


Note: Attempt all questions. Part (a) of each question is compulsory and carries 4 marks. Solve any two parts from part (b), (c) & (d) and carries 8 marks each.

Unit-I

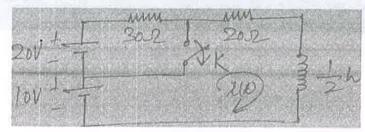
 (a) Write down the condition for maximum power transfer. (b) Find out the Thevenin's equivalent circuit for the given network

- (c) The network shown in below figure is operated in the sinusoidal steady state, with the element values given and $V = 100 \cos 2 t$. Determine:
 - (i) The complex power delivered by the source.
 - (ii) The effective current in each of the passive elements.

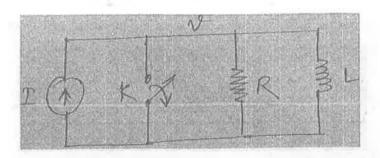

B028314(028)

[3]

(d) For the given network shown that:

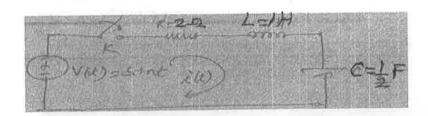

$$V_{\theta} = \frac{V_1}{2} [1 + a - ab]$$
 and $Z_{\theta} = \frac{3 - b}{2}$

where V_{θ} = Thevenin's volt x, z_{θ} = Thevenin's resistance.

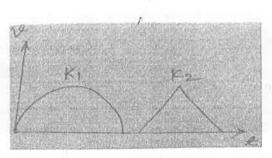


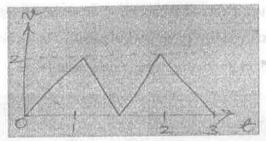
Unit-II

- 2. (a) What is the behaviour of inductor and capacitor under transient and steady state condition?
 - (b) Derive and explain the step response of RC circuit.
 - (c) The network of the figure reaches a steady state with the switch K open. At t=0 the switch K is closed. Find h(t) for numerical values given and sketch the current waveform. Also indicate the value of time constant.



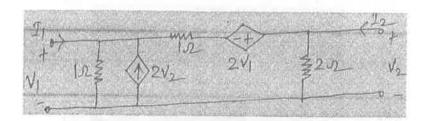
(d) K is opened at t = 0, solve for V, dv/dt and d^2v/dt^2 at 0+, If I = 1 A, $R = 100 \Omega$, L = 1H.




Unit-III

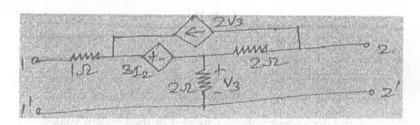
- 3. (a) Define initial and final value theorem.
 - (b) In the series RLC circuit shown, the applied voltage is $V(t) = \sin t$ for t > 0. For the elements values specified, find i(t). The switch is closed at t = 0.

(c) Synthesize the following waveforms and find out the Laplace transform.

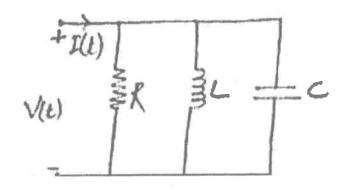


(d) State and prove Convolution Theorem. How does it useful for analysis of electrical network?

Unit-IV


- 4. (a) Give the equations of h parameter.
 - (b) The figure shown contains both a dependent current and dependent voltage source. For the element values given, determine the Y and Z parameters:

(c) The network shown below consists of a resistive T and a resistive Π network in parallel. For the element values given, determine Y parameters:


(d) Determine Z and Y parameter for the given circuit:

Unit-V

5. (a) What is a Sinusoid?

- (b) Explain the basic principle behind sinusoidal steady state analysis. Also give the steps to be followed to find the steady state value of i (t) in R-L circuit for a given excitation of $V = V \cos wt$, where V is the real time constant.
- (c) For the given network find current.

Find: l(t) = ?

Given: $R = 1/3 \Omega$

L = 1/4 H

C = 3 F

 $V(t) = \sin 2 t$

(d) Draw the phasor diagram of RL, RC and RLC circuit.

O'L THE HE Allow the State of the State of

100]